Significance of the sperm DNA fragmentation index (DFI) for male fertility diagnostics

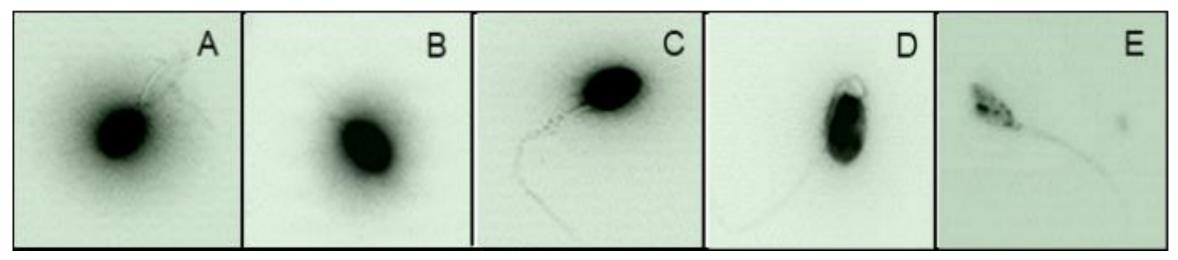
Background

A number of studies ^{1,2,3} around the world showed a decrease in sperm quality in men. Male infertility diagnostics is mainly based on analysis of clinical history, physical examination, hormone tests and sperm analysis.

Sperm analysis is an important part of male infertility diagnostics.

- **Sperm analysis** involves analyzing 3 parameters:
- ✓ The concentration of sperm cells (SCs)
- ✓ The percentage of motile SCs
- ✓ The percentage of normally formed sperm

Sperm analysis does not consider the integrity of the DNA molecule in the sperm head. We analyze:


- How the age of the patient correlates with the DNA fragmentation in sperm.
- How the SCs DNA fragmentation correlates with the individual parameters of the spermogram.
- How the SCs DNA fragmentation correlates with spermogram as a whole.

Materials and Methods

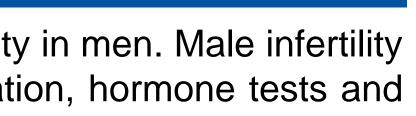
Measure of the sperm DNA fragmentation index (DFI)

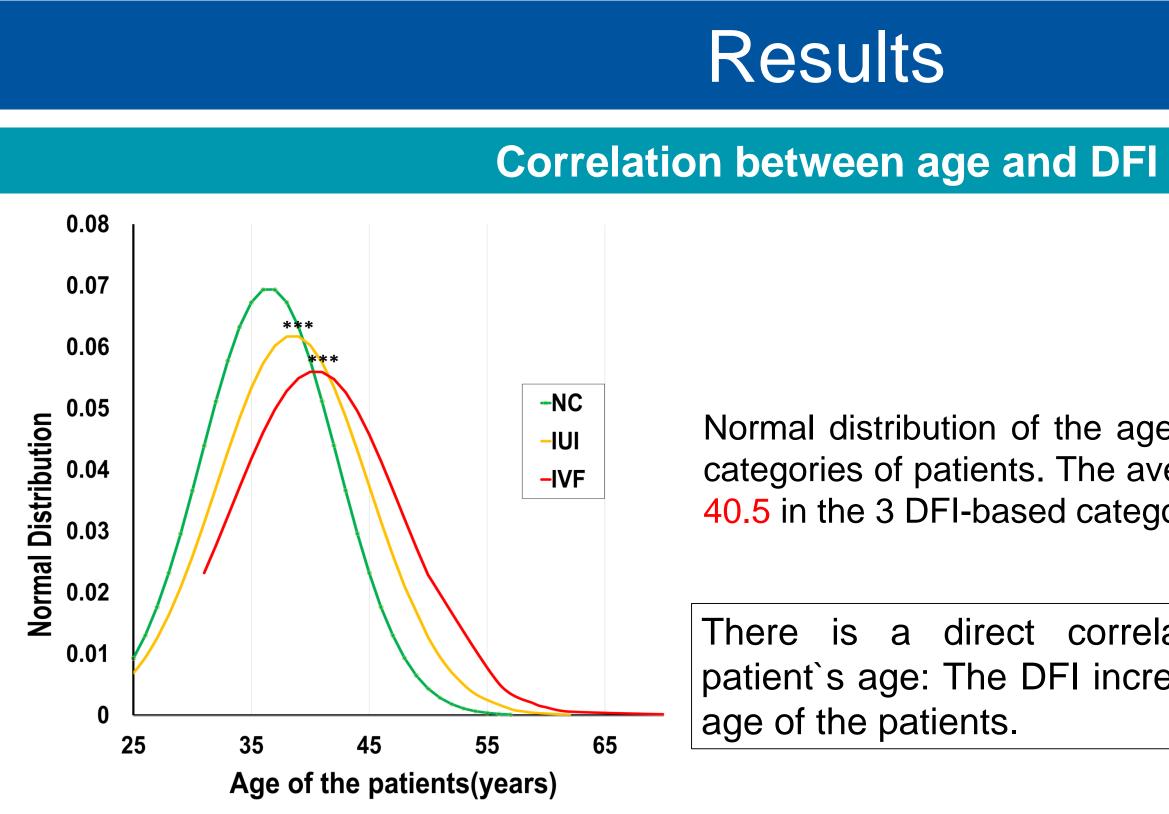
We compare the spermogram of 716 patients with their DNA Fragmentation Index (DFI). The DFI was assessed using the Halosperm® Test from Halotech, which is an indirect method to detect DNA strand breaks.

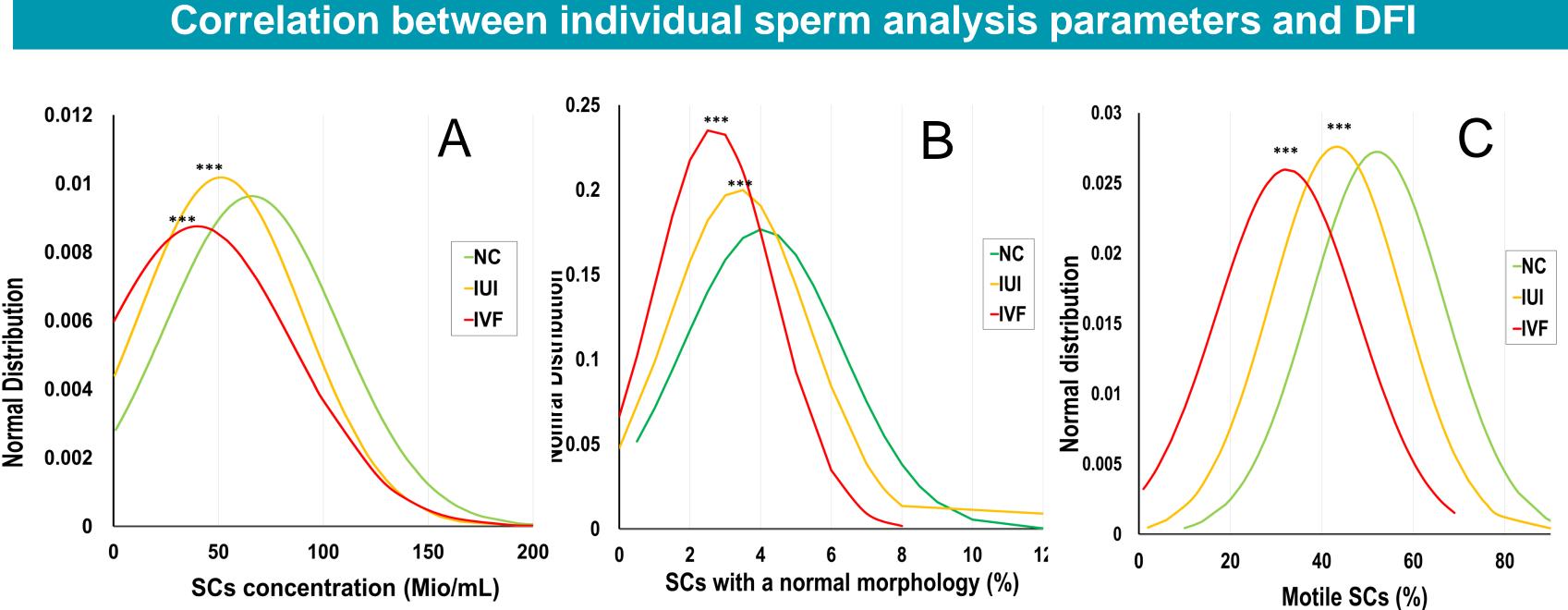
The DFI is the percentage of sperm cells in a semen sample that have fragmented DNA in their core.

Visual representation of different levels of DNA fragmentation inside sperm cells. A, B: Visible halo around the sperm cell head, underlining a low fragmentation. C: Small halo around the sperm cell head. D; No halo visible, E: Degraded sperm cell. C, D, E are typical representations of a high DNA representation of DNA fragmentation.

Distribution of patients in 3 groups

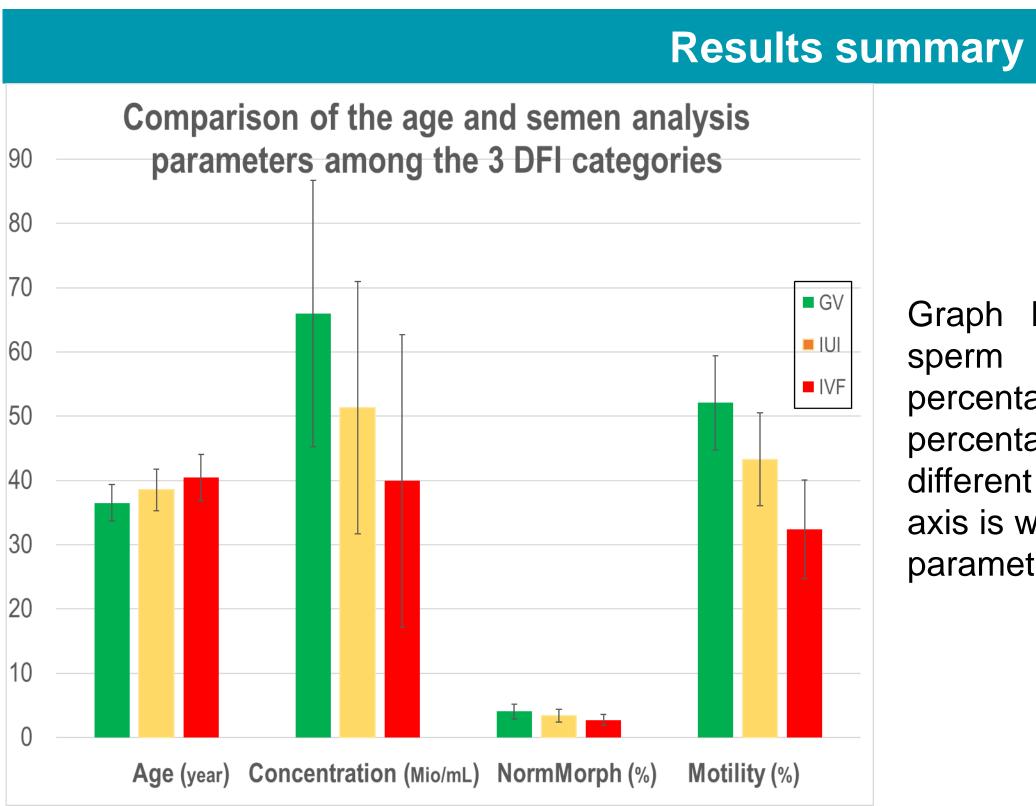

- \ge DFI \le 15%: Pregnancy with a fertile female partner can be achieved by natural conception (NC). This group includes 399 patients.
- > DFI between 16 and 29%: Intra uterine insemination (IUI) is recommended. This group includes 220 patients
- **DFI ≥ 30%:** In Vitro Fertilization (IVF) or Intracytoplasmic Sperm Injection (ISCI) are recommended. This group includes includes 97 patients


Comparison of individual sperm analysis parameters in the 3 groups


We analyzed the normal distribution of each parameter, performed t-tests to highlight the significance of our results, and calculated the correlation coefficient r² to determine, which sperm parameter is most impacted by the DFI.

Correlation between spermogram quality and DFI

Patients are divided into 4 groups according to the number (0, 1, 2, or 3) of abnormal spermogram parameters. The value of a parameter is considered abnormal when it is below the healthy range set by the WHO (2010)



Normal distribution of the 3 sperm analysis parameters in the 3 DFI-categories. <u>A</u>: Distribution of the SCs concentration. The average concentrations are 66.0, 51.3 and 39.9 in the 3 DFI-based categories. $r^2 = -0.21$. **<u>B</u>**: Distribution of the proportion of normally formed SCs. The average percentages are 4.04, 3.37 and 2.69 in the 3 DFI-based categories. $r^2 = -0.25$. <u>C</u>: Distribution of the proportion of motile SCs. The average percentages are 52.1, 43.3 and 32.4 in the 3 DFI-based categories. $r^2 = -0.46$. ***p<0.002

There is a correlation between DFI and the routinely tested sperm parameters: When the DFI increases, the concentration, the proportion of normally shaped and the motility of the SCs decreases.

O. Vedrines, A. Mathwig, M. Stumm, Medicover Genetics, MVZ Humangenetik Berlin-Lichtenberg, Berlin, Germany

Patients are distributed in 4 groups depending on the quality of their spermogram.

Normal distribution of the age of the patients in the 3 DFIcategories of patients. The average ages are 36.5, 38.5 and 40.5 in the 3 DFI-based categories. **r²= 0.22.** ***p<0.002

There is a direct correlation between DFI and patient's age: The DFI increases significantly with the age of the patients.

Graph highlighting the average in age, and analysis parameters (concentration, percentage of normally formed sperm cells, and percentage of motile sperm cells) in the 3 different groups of patients. The scale on the yaxis is written in the bracket associated with each parameter.

NC:

Among patients who present a healthy spermogram (all 3 parameters within normal ranges), we identify 12 patients (4.3%) whom DNA fragmentation inside their sperm cells are within critical range (higher than 30%)

Out of those 12 patients, 5 of them are under 40 years old


This highlights the fact that DNA fragmentation analysis can provide additional information that routine sperm analysis does not. Especially in patients with a normal spermogram and unexplained fertility problems, the DNA fragmentation index can serve as an **additional clinical biomarker**.

DFI analysis allows a more detailed assessment of male fertility. It can help to determine an individual and appropriate fertility treatment or explain previously unsuccessful therapeutic approaches

We would like to thank Michaela Blankenburg, as well as the physicians and staff members of the Praxis Für Medizinische Genetik, Berlin (Clinic for Medical Genetics, Berlin)

¹Carlsen, E., et al., Evidence for decreasing quality of semen during past 50 years. BMJ 305, 609–613 (1992). ²Auger, J. et al., Decline in semen quality among fertile men in Paris during the past 20 years. N. Engl. J. Med. 332, 281–285 (1995). ³Geoffroy-Siraudin, C. et al. Decline of semen quality among 10932 males consulting for couple infertility over a 20-year period in Marseille, France. Asian J. Androl. 14, 584–590 (2012).

Correlation between sperm analysis and DFI

	3/3 parameters within normal		2/3 parameters within normal		1/3 parameters within normal		0/3 parameters		
							within normal		
	Number		Numbe		Number	(%)	Numbe	(%)	
	of	(%)	rof	(%)	of		r of		
	patients	(70)	patients	(70)	patients		patient		
	paliento		palients		paliento		S		
: DFI <15	193	69.9	150	56.2	41	36.3	7	16.7	
5< DFI <30	71	25.7	89	33.3	39	34.5	15	35.7	
∹ DFI •30	12	4.3	28	10.5	33	29.2	20	47.6	
otal	276	100	267	100	113	100	42	100	

patient ID	DFI	Age	Concentratio	normo-	Motility
number	iber		n (Mio/ml)	morph (%)	(%)
40555	30	73	40	7	46
HS36-13565	31	40	160	4	36.5
42641	32	35	73	4	41
36583	32	56	43	8	37
31365	32	46	85	4	36
35110	33	37	88	8	61
34392	34	43	77	5	41
33439	35	41	140	6	36
42763	36	38	28.5	4	45
38063	39	34	57	5	63
38445	40	41	78	6	56
40393	59	35	32	4	51
average	36.1	43.3	75.1	5.4	45.8

Conclusions

• The DFI shows a direct correlation to the age of the patients.

• The DFI shows a correlation to all 3 standard spermogram parameters, alone and in combination. • Interestingly, 4% of patients with a normal spermogram show a high DFI (>30%).

Acknowledgments & Citations

Significance of the sperm DNA fragmentation index (DFI) for male fertility diagnostics **O. Vedrines, A. Mathwig, M. Stumm, Medicover Genetics**, MVZ Humangenetik Berlin-Lichtenberg, Berlin, Germany

Background

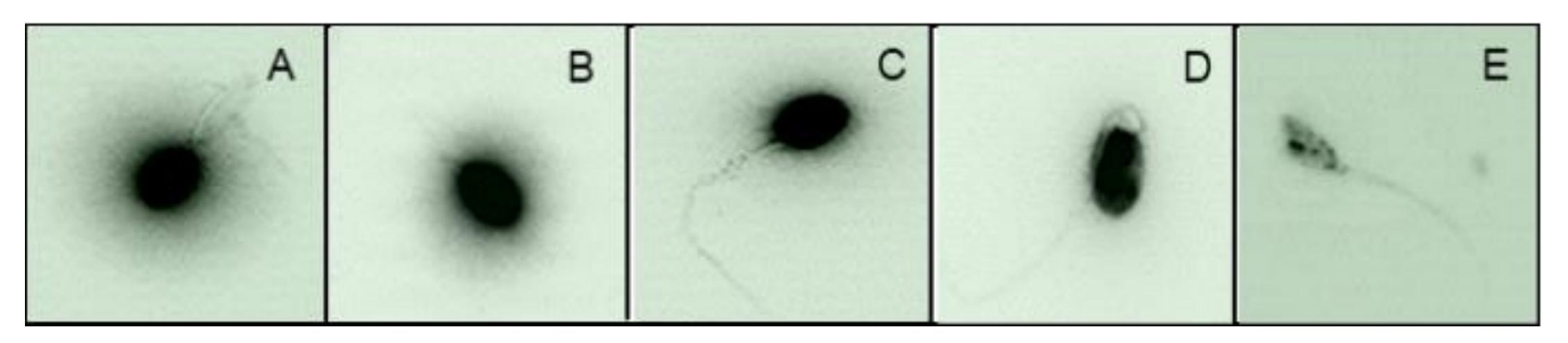
A number of studies ^{1,2,3} around the world showed a decrease in sperm quality in men. Male infertility diagnostics is mainly based on analysis of clinical history, physical examination, hormone tests and sperm analysis.

Sperm analysis is an important part of male infertility diagnostics.

Sperm analysis involves analyzing 3 parameters:

- ✓ The concentration of sperm cells (SCs)
- ✓ The percentage of motile SCs
- ✓ The percentage of normally formed sperm

Sperm analysis does not consider the integrity of the DNA molecule in the sperm head. We analyze:


- How the age of the patient correlates with the DNA fragmentation in sperm.
- How the SCs DNA fragmentation correlates with the individual parameters of the spermogram.
- How the SCs DNA fragmentation correlates with spermogram as a whole.

Materials and Methods

Measure of the sperm DNA fragmentation index (DFI)

We compare the spermogram of 716 patients with their DNA Fragmentation Index (DFI). The DFI was assessed using the Halosperm® Test from Halotech, which is an indirect method to detect DNA strand breaks.

The DFI is the percentage of sperm cells in a semen sample that have fragmented DNA in their core.

Visual representation of different levels of DNA fragmentation inside sperm cells. A, B: Visible halo around the sperm cell head, underlining a low fragmentation. C: Small halo around the sperm cell head. D; No halo visible, E: Degraded sperm cell. C, D, E are typical representations of a high DNA representation of DNA fragmentation.

Distribution of patients in 3 groups

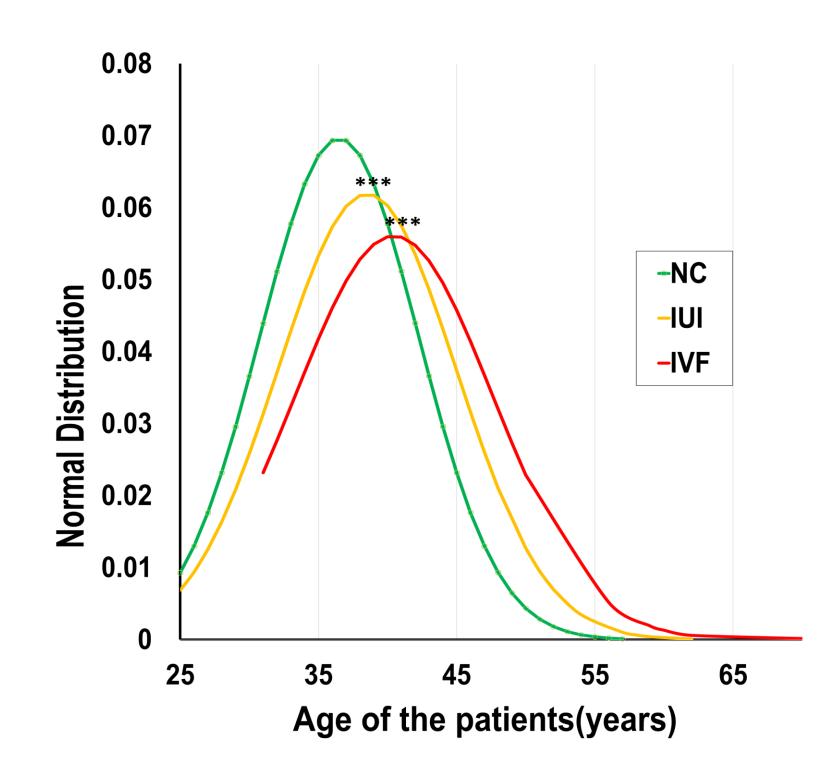
- includes 399 patients.
- > DFI between 16 and 29%: Intra uterine insemination (IUI) is recommended. This group includes 220 patients
- includes includes 97 patients

Comparison of individual sperm analysis parameters in the 3 groups

We analyzed the normal distribution of each parameter, performed t-tests to highlight the significance of our results, and calculated the correlation coefficient r² to determine, which sperm parameter is most impacted by the DFI.

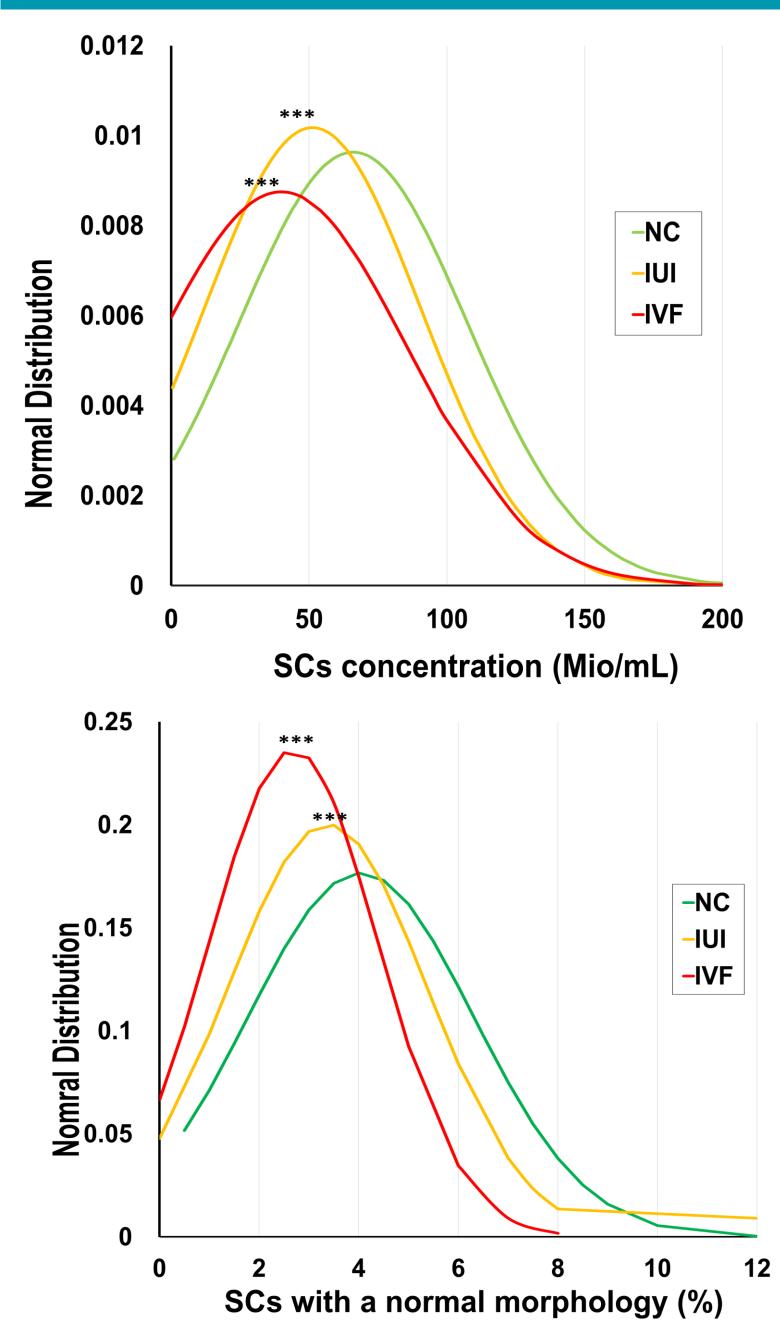
Correlation between spermogram quality and DFI

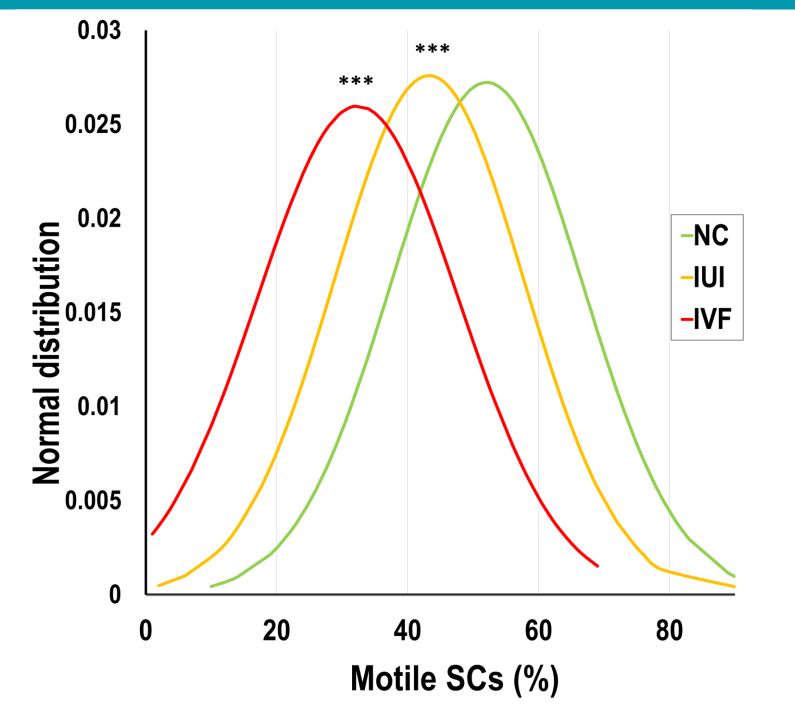
Patients are divided into 4 groups according to the number (0, 1, 2, or 3) of abnormal spermogram parameters. The value of a parameter is considered abnormal when it is below the healthy range set by the WHO (2010)


➢ DFI ≤ 15%: Pregnancy with a fertile female partner can be achieved by natural conception (NC). This group

▷ DFI ≥ 30%: In Vitro Fertilization (IVF) or Intracytoplasmic Sperm Injection (ISCI) are recommended. This group

Results

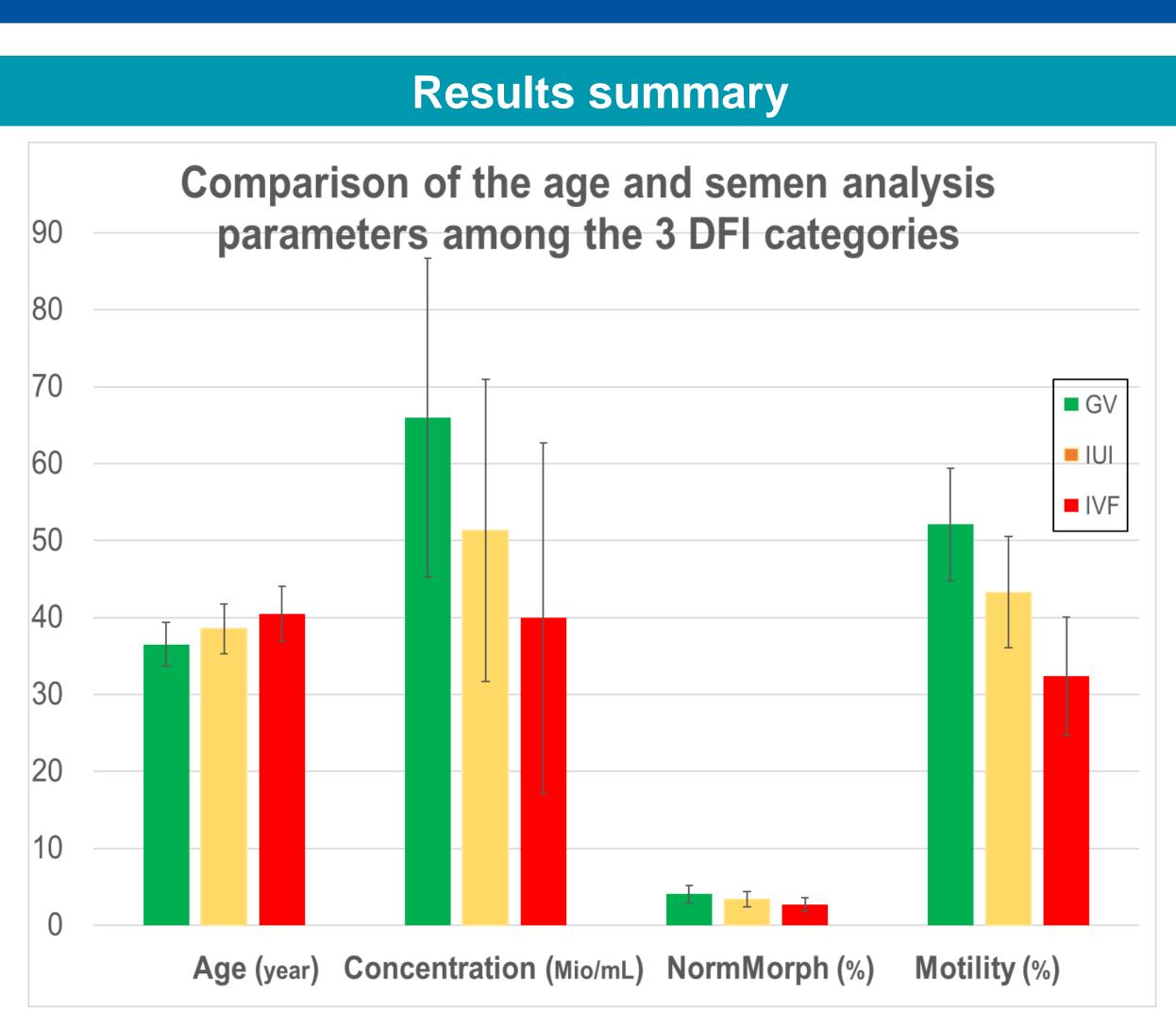

Correlation between age and DFI



3 DFI-based categories. ***p<0.002

There is a direct correlation between DFI and patient's age: The DFI increases significantly with the age of the patients.

Correlation between individual sperm analysis parameters and DFI



Normal distribution of the 3 sperm analysis parameters in the 3 DFI-categories. A: Distribution of the SCs concentration. The average concentrations are 66.0, 51.3 and 39.9 in the 3 DFI-based categories. $r^2 = -0.21$. **<u>B</u>**: Distribution of the proportion of normally formed SCs. The average percentages are 4.04, 3.37 and 2.69 in the 3 DFI-based categories. $r^2 = -0.25$. <u>C</u>: Distribution of the proportion of motile SCs. The average percentages are 52.1, 43.3 and 32.4 in the 3 DFI-based categories. **r² =-0.46.** ***p<0.002

There is a correlation between DFI and the sperm parameters: When the DFI increases, the concentration, the proportion of normally shaped and the motility of the SCs decreases.

Significance of the sperm DNA fragmentation index (DFI) for male fertility diagnostics

Normal distribution of the age of the patients in the 3 DFI-categories of patients. The average ages are 36.5, 38.5 and 40.5 in the $r^2 = 0.22.$

Graph highlighting the average in age, and sperm analysis parameters (concentration, percentage of normally formed sperm cells, and percentage of motile sperm cells) in the 3 different groups of patients. The scale on the y-axis is written in the bracket associated with each parameter.

Correlation between sperm analysis and DFI

Patients are distributed in 4 groups depending on the quality of their spermogram.

	3/3 parameters within normal		2/3 parameters within normal		1/3 parameters within normal		0/3 parameters within normal	
	Number of patients	(%)	Numbe r of patients	(%)	Number of patients	(%)	Numbe r of patient s	(%)
NC: DFI <15	193	69.9	150	56.2	41	36.3	7	16.7
IUI: 15< DFI <30	71	25.7	89	33.3	39	34.5	15	35.7
IVF: DFI >30	12	4.3	28	10.5	33	29.2	20	47.6
Total	276	100	267	100	113	100	42	100

parameters are within normal range.

Among patients who present a healthy spermogram (all 3 parameters within normal ranges), we identify 12 patients (4.3%) whom DNA fragmentation inside their sperm cells are within critical range (higher than 30%).

O. Vedrines, A. Mathwig, M. Stumm, Medicover Genetics, MVZ Humangenetik Berlin-Lichtenberg, Berlin, Germany

Results

Table showing the distribution of the patients in 4 groups depending on how many of the sperm

Out of those 12 patients, 5 of them are under 40 years old.

	DFI	Alter	Konz.	normo_morph	motility
38063	39	34	57	5	63
35110	33	37	88	8	61
38445	40	41	78	6	56
40393	59	35	32	4	51
40555	30	73	40	7	46
42763	36	38	28.5	4	45
34392	34	43	77	5	41
42641	32	35	73	4	41
36583	32	56	43	8	37
HS36-13565	31	40	160	4	36.5
33439	35	41	140	6	36
31365	32	46	85	4	36
Average	36	43	75	5	46

- combination.

This highlights the fact that DNA fragmentation analysis can provide additional information that routine sperm analysis does not. Especially in patients with a normal spermogram and unexplained fertility problems, the DNA fragmentation index can serve as an additional clinical biomarker.

DFI analysis allows a more detailed assessment of male fertility. It can help to determine an individual and appropriate fertility treatment or explain previously unsuccessful therapeutic approaches

Acknowledgments & Citations

members of the

613 (1992). Engl. J. Med. 332, 281–285 (1995).

Table representing 12 patients who had normal semen parameters but a high DNA fragmentation highlighted after performing the DNA dispersion assay.

Conclusions

• The DFI shows a direct correlation to the age of the patients.

• The DFI shows a correlation to all 3 standard spermogram parameters, alone and in

• Interestingly, 4% of patients with a normal spermogram show a high DFI (>30%).

We would like to thank Michaela Blankenburg, as well as the physicians and staff

Praxis Für Medizinische Genetik, Berlin (Clinic for Medical Genetics, Berlin)

¹Carlsen, E., et al., Evidence for decreasing quality of semen during past 50 years. BMJ 305, 609–

²Auger, J. et al., Decline in semen quality among fertile men in Paris during the past 20 years. N.

³Geoffroy-Siraudin, C. et al. Decline of semen quality among 10932 males consulting for couple infertility over a 20-year period in Marseille, France. Asian J. Androl. 14, 584–590 (2012).