CASE STUDY

18-year-old male with a clinical diagnosis of polyposis (benign) The patient was diagnosed with a benign form of polyposis without any indication of family history.

PreSENTIA Colorectal Polyposis Syndrome was then performed to identify potential germline mutations linked with polyposis. The test identified:

 \bigcirc A gross genomic **deletion** of the entire coding sequence and promoter 1A of the **APC** gene

This deletion is associated with **familial adenomatous polyposis (FAP)**

PreSENTIA led to:

- Accurate identification of the inherited genetic alterations associated with increased cancer risk
- Clinical management plan tailored to the patient
- O Medical management recommendations, including:
 - Annual colonoscopy
 - Endoscopic evaluation
 - Chemoprevention (in selected patients)
 - Duodenal surveillance
 - Ultrasound for thyroid cancer

Clinical utility

PreSENTIA accurately identified the genetic affection that is associated with FAP, an autosomal dominant disorder. If not identified early or treated, FAP increases the risk of developing colorectal cancer in the future. PreSENTIA enabled an early treatment plan that will benefit the patient.

ABOUT MEDICOVER GENETICS

Medicover Genetics is a leading healthcare company specialising in genetic medicine, with more than 25 years of experience in genetics diagnostics. Medicover Genetics offers genetic testing services and genetic counselling, proprietary CE-IVD marked solutions and a versatile Technology Transfer Platform which enables partners to perform high fidelity genetic tests in-house. With services in over 30 countries across Europe, Asia, and Africa, the company empowers laboratories, healthcare professionals and patients to place genetics at the core of medical decisions. Committed to enhancing health and well-being, Medicover Genetics provides meaningful, actionable diagnostic solutions, improving disease prognosis, clinical management, and therapy selection for genetic disorders. The CAP-accredited, CLIA-, GMP- and ISO9001, 15189, and 13485 certified laboratories ensure the highest quality standards. www.medicover-genetics.com

Medicover Genetics is part of Medicover, a leading international healthcare and diagnostic services company founded in 1995 and listed on Nasdaq Stockholm. www.medicover.com

Medicover Genetics Ltd www.medicover-genetics.com info.genetics@medicover.com

Presenta ® hereditary cancer

Genes and genetic alterations

WHAT IS PreSENTIA?

PreSENTIA is a genetic test for hereditary cancer. It identifies hereditary genetic alterations which are implicated in hereditary cancer syndromes and increase the risk of developing cancer in the future.

CLINICAL UTILITY —

PreSENTIA is designed to identify the genetic alterations which can predispose to cancer development in the future

- Better classification of the genetic variants
- Identify individuals and family members who are at high risk of developing cancer
- Take early prophylactic measures to minimize the risk of developing cancer
- Identify the best clinical management

LIST OF HEREDITARY CANCER SYNDROMES TESTED

Hereditary cancer susceptible genes can be associated with hereditary cancer syndromes which increase the risk of developing cancer in the future. The table below indicates the syndromes tested in PreSENTIA.

PreSENTIA HEREDITARY CANCER SYNDROMES TESTED		
Ataxia-telangiectasia syndrome	Li-Fraumeni syndrome	
BAP1 mutation associated disease	Li-Fraumeni syndrome 2	
Constitutional mismatch repair syndrome	Lynch syndrome	
DICER 1 syndrome	Multiple endocrine neoplasia type 1	
Familial adenomatous polyposis / Attenuated familial adenomatous polyposis	Multiple endocrine neoplasia type 2	
Fanconi anemia syndrome	MUTYH-associated polyposis syndrome	
Hereditary breast & ovarian cancer syndrome	Peutz-Jeghers syndrome	
Hereditary diffuse gastric syndrome	Polymerase proofreading associated syndrome	
Hereditary mixed polyposis syndrome	PTEN hamartoma syndrome	
Hereditary melanoma-pancreatic cancer syndrome	Retinoblastoma	
Hereditary paraganglioma – pheochromocytoma syndrome	Von-Hippel Lindau syndrome	
Juvenile polyposis syndrome	Xeroderma pigmentosum syndrome	

FEATURES AND SPECIFICATIONS

Target capture enrichment technology

SNVs, INDELs, CNAs

Sample type: Buccal swab

LIST OF GENES AND GENETIC ALTERATIONS TESTED

PreSENTIA examines a spectrum of genetic alterations such as single nucleotide variants (SNVs), insertions and deletions (INDELs), and copy number alterations (CNAs) via next generation sequencing (NGS). PreSENTIA targets full coding exons*. The following table indicates the type of genetic alterations covered by PreSENTIA in the different panels.

PANEL	SNVs/INDELs, CNAs
Pan-Cancer 62 genes	AKT1, ATM, BARD1, BRAF, BRCA1, BRCA2, BRIP1, CHEI KIT, KRAS, MAP3K1, MLH1, MRE11A, MSH2, MSH6 M RAF1, RET, RUNX1, SMAD4, TP53
Breast & Gynecological 26 genes	ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, DI POLE, PTEN, RAD50, RAD51C, RAD51D, SMARCA4, STK
Breast/Gynecological Guidelines-Based 19 genes	ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, El STK11
Breast High Risk 7 genes	BRCA1, BRCA2, CDH1, PALB2, PTEN, STK11, TP53
BRCA1 / BRCA2 2 genes	BRCA1, BRCA2
Colorectal 17 genes	APC, BMPR1A, CDH1, CHEK2, EPCAM [†] , GREM1 [†] , MLH1, I
Colorectal High-Risk 10 genes	APC, BMPR1A, EPCAM [†] , MLH1, MSH2, MSH6, MUTYH
Colorectal Non-Polyposis 5 genes	EPCAM [†] , MLH1, MSH2, MSH6, PMS2
Colorectal Polyposis Syndrome 7 genes	APC, BMPR1A, MUTYH, POLD1, POLE, SMAD4, STK11
Myelodysplastic Syndrome Leukemia 24 genes	ATM, BRCA1, BRCA2, BRIP1, EPCAM [†] , ERCC4, FANCA, MSH2, MSH6, PALB2, PMS2, RAD51C, SLX4, TP53
Gastric 14 genes	APC, BMPR1A, CDH1, EPCAM [†] , MLH1, MSH2, MSH6, P
Prostate 15 genes	ATM, BRCA1, BRCA2, CHEK2, EPCAM [†] , HOXB13 [‡] , MLH1,
Pancreatic 17 genes	APC, ATM, BRCA1, BRCA2, BMPR1A, CDK4, CDKN2A PMS2, SMAD4, STK11, TP53
Renal 13 genes	BAP1, EPCAM [†] , MLH1, MSH2, MSH6, PMS2, PTEN, SDF
Skin (XP-Associated) 9 genes	DDB2, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, POLH, X
Familial Melanoma 7 genes	BAP1, BRCA2, CDK4, CDKN2A (CDKN2A ^{p16(INK4A)} , CDKN
Paraganglioma/ Pheochromocytoma 6 gene	RET, SDHAF2, SDHB, SDHC, SDHD, VHL
Parathyroid 1 gene	MEN1
Thyroid 1 gene	RET

[†]SNVs/INDELs are not covered [‡]CNAs are not covered

*Exceptions on regions containing repeats, sequences of high homology (pseudogenes and segmental duplications) or high GC-content

EK2, CTNNB1, DICER1, EGFR, ERBB2, ERBB3, ESR1, FBXW7, FOXA1, FOXL2, GATA3, ITOR, NBN, NRAS, PALB2, PIK3CA, PIK3CB, PMS2, POLE, PTEN, RAD51C, RAD51D,

DICER1, EPCAM[†], MLH1, MRE11, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, POLD1, FK11, TP53

EPCAM[†], MLH1, MSH2, MSH6, NBN, PALB2, PMS2, PTEN, RAD51C, RAD51D, TP53,

MSH2, MSH6, MUTYH, PMS2, POLD1, POLE, PTEN, SMAD4, STK11, TP53

I, PMS2, SMAD4, STK11

, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, MLH1,

PMS2, SDHB, SDHC, SDHD, SMAD4, STK11, TP53

, MSH2, MSH6, NBN, PALB2, PMS2, PTEN, RAD51D, TP53

A, (CDKN2A^{p16(INK4A)}, CDKN2A^{p14(ARF)}), EPCAM[†], MEN1, MLH1, MSH2, MSH6, PALB2

OHAF2, SDHB, SDHC, SDHD, TP53, VHL

XPA, XPC

N2Ap14(ARF), PTEN, RB1, TP53