SCIENTIFIC BACKGROUND

AICDA, CD40, CD40LG, UNG

Category:

Scientific Background

Hyper-IgM syndrome (HIGM) is a group of rare, genetically diverse conditions characterized by low or absent serum IgG and IgA levels with normal or elevated IgM and normal B cell counts. It is caused by a disorder of immunoglobulin class switching that is sometimes combined with a disturbance of somatic hypermutation. As a result, an initial humoral immune defect with an increased susceptibility to bacterial sinopulmonary infections develops. In some forms of the disease (HIGM1, HIGM3), there is also a T cell function deficiency, so that opportunistic infections and an increased risk of malignancy also occur.

 

To date, five HIGM subtypes have been documented:

 

HIGM1: CD40LG gene (X-chromosomal)

HIGM1 is the most common form of HIGM and is present in about 80% of male patients. The CD40 ligand is expressed on T cells after antigen stimulation; its interaction with the CD40 receptor on B cells is essential for class change from IgM to IgG, IgE or IgA. Another X-linked defect with the phenotype of HIGM is caused by pathogenic variants in the IKBKG gene, which codes for the NF-kB essential modulator (NEMO). However, in the case of the NEMO defect, anhidrotic ectodermal dysplasia is also present.

 

HIGM2: AICDA gene (autosomal recessive)

Defects in activation-induced cytidine deaminase lead to disturbances in immunoglobulin class switching and somatic hypermutation, so that no specific and high-affinity antibodies can be produced. Although opportunistic infections as seen in combined immunodeficiencies and an increase in malignancies have not been described so far, autoimmune diseases are frequent. There is also lymphoproliferation with lymphadenopathy.

 

HIGM3: CD40 gene (autosomal recessive)

The CD40 receptor is constitutively expressed on B cells/antigen presenting cells. HIGM3 corresponds to HIGM1 clinically and in severity level.

 

HIGM4:

HIGM4 forms a group of patients that cannot be assigned to any of the other subtypes on a molecular level. HIGM4 is associated with limited subclass switching but usually mild disease courses. The somatic hypermutation is preserved.

 

HIGM5: UNG gene (autosomal recessive)

The UNG gene codes for uracil DNA glycosylase, which initiates the DNA repair mechanism during class switching. The HIGM5 phenotype is similar to HIGM2.

 

References

Johnson et al. 2013, GeneReviews® [Internet] https://www.ncbi.nlm.nih.gov/books/NBK1402/ / Yazdani et al. 2019, Clin Immunol. 198:19 / Qamar et al, Clinic Rev Allerg Immunol 46:120 (2014)

GENES

AICDA, CD40, CD40LG, UNG

ASSOCIATED TESTS

How to order

LATEST ARTICLES

We're thrilled to share the results of Medicover Genetics essay competition for high school students as well as the two winning essays. This competit...

Read more

Cystic fibrosis (CF) is a life-threatening, progressive, inherited condition that causes severe damage to the body, primarily affecting the organs of...

Read more

Down syndrome is a genetic condition caused by the presence of an extra copy of chromosome 21. It affects physical growth, facial features, and cogni...

Read more

Every year on April 25th, DNA Day celebrates the discovery of DNA’s double helix and the advances we’ve made in understanding genetics. D...

Read more

Neurodevelopmental disorders (NDDs) have diverse genetic origins, making diagnosis challenging. A new study analyzing over 1,100 pediatric patients f...

Read more

Colorectal cancer (CRC) remains one of the most prevalent and deadly cancers worldwide, with a significant number of cases presenting at an advanced ...

Read more

Carrier screening is a genetic test designed to identify whether an individual carries a gene with changes (mutations) associated with inherited diso...

Read more

Trisomy 13, also known as Patau syndrome, is a genetic condition in which cells in the body have three copies of chromosome 13 instead of two. The co...

Read more

The human brain develops through a complex series of events, with genes carefully regulating the formation of neurons and glial cells. A recent study...

Read more

Rare diseases affect between 300 and 400 million people worldwide – more than cancer and AIDS combined [1, 2], but despite this, many people face a...

Read more