SCIENTIFIC BACKGROUND

CLCN5DMP1ENPP1FAM20CFGF23PHEXSLC34A1SLC34A3SLC9A3R1

The most common form of hypophosphatemia or hereditary hypophosphatemic rickets without hypercalciuria is caused by causative variants in the PHEX gene, which codes for the phosphate-regulating endopeptidase. The disease is inherited in an X-linked manner; however, females and males are equally affected. Penetrance is 100% and prevalence is 1:20,000. In addition to hypophosphatemia, growth retardation, rickets, osteomalacia, bone abnormalities, bone pain, spontaneous dental abscesses, hearing loss, enthesopathy, osteoarthritis, muscle dysfunction, impaired renal phosphate reabsorption, and impaired vitamin D metabolism are seen.

 

The clinical presentation of X-linked hypophosphatemia (XLH) is highly variable, ranging from isolated hypophosphatemia to severe lower extremity deformity. The diagnosis is often made in the first two years of life when lower extremity deformity becomes apparent as a child starts to walk. However, due to the highly variable clinical presentation, the diagnosis is sometimes not made until adulthood. There is evidence that the type of genetic alteration correlates with the severity of the disease. For example, patients with larger deletions tend to be more severely affected than patients with missense variants. This may explain the large phenotypic variability.

 

Low serum phosphate levels and reduced tubular phosphate reabsorption in children suggests hypophosphatemia caused by variants in the PHEX gene. Clinically, progressive deformities of the lower extremities with decreasing length growth can be observed, as well as changes in the metaphyses of the lower extremities visible on x-ray. In addition, patients with XLH are prone to spontaneous dental abscesses.

 

Externally, the skeletal changes in nutritional rickets cannot be distinguished from hereditary forms of rickets. However, there is a biochemical distinction: in hypophosphatemic rickets, serum concentrations of calcium and 25-hydroxy vitamin D (calcidiol, the storage form of vitamin D) are within the normal range, unlike in nutritional rickets. In contrast, di-hydroxy vitamin D (calcitriol, active vitamin D) is reduced in hypophosphatemic rickets.

 

In addition to variants in the PHEX gene, other genetic and acquired disorders can also cause renal phosphate loss. These include variants in the FGF23, DMP1, ENPP1, SLC34A3, SLC9A3R1, SLC34A1, CLCN5, and FAM20C genes, and conditions such as McCune-Albright syndrome (GNAS gene), Schimmelpenning-Feuerstein-Mims syndrome (KRAS, HRAS, and NRAS genes), Fanconi syndrome, and tumor-induced osteomalacia.

 

Treatment options include administration of active vitamin D analogs and phosphate supplementation to correct 1,25 (OH) 2 vitamin D deficiency and compensate for renal phosphate loss. In addition, therapy with KRN23/burosumab, a recombinant human monoclonal antibody against FGF23, has been approved in Europe since 2018.

 

References

Beck-Nielsen et al. 2019, Orphanet Journal of Rare Diseases 14:58 / www.orpha.net / Ruppe M.D. 2017, GeneReviews® [Internet], www.ncbi.nlm.nih.gov/books/NBK83985/

 

GENES

CLCN5DMP1ENPP1FAM20CFGF23PHEXSLC34A1SLC34A3SLC9A3R1
How to order

LATEST ARTICLES

Mosaicism is a biological phenomenon in which a person has two or more genetically different sets of cells. Although mosaicism may have no effect, it...

Read more

Background information on in vitro diagnostic services Laboratory-based testing methods and medical devices play a critical role in diagnosis and ...

Read more

Traditional DNA tests may overlook 10% of classic in Familial Adenomatous Polyposis (FAP) cases. By integrating RNA sequencing, researchers unveiled ...

Read more

Overview In January 2024, the American Society of Clinical Oncology (ASCO) and the Society of Surgical Oncology (SSO) published new recommendation...

Read more

Endometriosis is a chronic gynecological condition that affects 1 in 10 women of reproductive age worldwide [1]. It can manifest with the first menst...

Read more

Rare Disease Day is a global awareness day held annually to raise awareness of all rare diseases. It was first celebrated in 2008, on the rarest day ...

Read more

Cancer is a group of genetic diseases that can develop almost anywhere in the body. Many people in the world are affected by cancer every year. Follo...

Read more

Aiming to evaluate the role of chromosomal aneuploidy in pregnancy loss, a 2023 study 35 years in the making evaluated the genomic landscape of first...

Read more

Cancer is a complex genetic disease that affects millions of people in the world. It is one of the leading causes of death worldwide, with about ten ...

Read more

Researchers created a detailed map of the placenta during labor. By studying how maternal and fetal cells communicate, they discovered signals in the...

Read more