SCIENTIFIC BACKGROUND

SPRED1

Category:

Legius syndrome, historically known as Neurofibromatosis type 1-like syndrome (NFLS), is characterized by multiple café-au-lait spots with or without additional freckle-like spots in the axilla or groin. In addition, macrocephaly, learning difficulties, and developmental delay may be present. Thus, the diagnostic criteria of the NIH Consensus Development Conference Statement are overlapping with the diagnosis of neurofibromatosis type 1, and no clinical differentiation from NF1 is possible. A distinctive difference from NF1 in patients with Legius syndrome is the absence of other clinical NIH criteria such as Lisch nodules of the iris, neurofibromas, optic gliomas, typical bone changes, and possibly nodule-like changes of the choroid. In contrast, Legius syndrome involves subcutaneous lipomas occurring in adulthood.

 

Legius syndrome can be confirmed by detection of a pathogenic variant in the SPRED1 gene. SPRED1 (Sprouty-Related EVH1 Domain Containing 1) is a member of the so-called Sprouty (SPRY) family of proteins that function as negative regulators within mitogen-activated protein kinase (MAPK) signal transduction. Approximately 90% of variants are small nucleotide changes in the SPRED1 gene, with larger genomic deletions or duplications present in 10% of patients. Most pathogenic variants result in premature translational stop in protein biosynthesis and loss of protein function upon inhibition of Raf1 kinase activation. In classical neurofibromatosis type 1, pathogenic variants in the NF1 gene can be detected in up to 95% patients if more than two clinical NIH criteria are met. In contrast, the detection rate of pathogenic variants in the SPRED1 gene is about 2% in sporadic patients with NF1-like phenotype or Legius syndrome, and up to 19% in patients with a positive family history including the presence of café-au-lait spots and freckling without other clinical criteria for NF1.

 

References

Tucci et al. 2017, J Hum Genet 62:1001 / Stevenson et al, In: Adam, Ardinger, Pagon, et al, editors. GeneReviews® (Updated 2015 Jan 15) / Pasmant et al. 2015, Eur J Hum Genet 23:596 / Brems et al. 2012, Hum Mutat 33:1538 / Spencer et al. 2011, Am J Med Genet A 155:1352 / Muram-Zborovski et al. 2010, J Child Neurol 25:1203 / Messiaen et al. 2009, JAMA 18:2111 / Brems et al. 2007, Nat Genet 39:1120

GENES

SPRED1

ASSOCIATED TESTS

How to order

LATEST ARTICLES

In May 2024, the American Society of Clinical Oncology (ASCO) published new guidelines for germline genetic testing in patients with cancer (1). ...

Read more

Genetics as we know and understand it today has been shaped, over decades, by the work of many dedicated scientists around the world, and they all de...

Read more

A comprehensive single-cell transcriptomic atlas of 1.3 million cells from aged human brains reveals cellular pathways linked to Alzheimer’s diseas...

Read more

Infertility is a struggle for many individuals nowadays. According to the World Health Organization (WHO), 1 in 6 people experience infertility, show...

Read more

A recent study highlights promising outcomes for BRCA variant carriers with breast cancer undergoing breast-conserving therapy. Analyzing 172 women, ...

Read more

Epidermolysis bullosa (EB), sometimes called butterfly skin, is a group of rare skin diseases with a common symptom: fragile skin that tears and blis...

Read more

In the rapidly evolving field of human genetics diagnostics, laboratories face the challenge of keeping up with the latest advancements in technology...

Read more

Medicine as we know it has been around for just over 100 years. Before this, alcohol and opium were the main forms of pain relief in Europe. The deve...

Read more

Below you can read the two winning essays from the second annual DNA essay competition. The subject of the essay was “Family history is one of the ...

Read more

Mosaicism is the presence of two or more genetically different sets of cells within the same person. It is a biological phenomenon that may have no e...

Read more